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Abstract

Most orogenic belts owe their development to oblique convergence and commonly have many orogen-parallel transpressional high-strain
zones. To constrain the tectonic history of orogenic belts by structural and fabric analysis of rocks, it is desirable to understand quantitatively
the relationship between the boundary conditions and the resulting strain distribution and kinematics in these zones. Most current models for
transpression assume homogeneous deformation confined by boundaries that are fixed to material planes. This creates a strain compatibility
problem at the margins of the active deforming zone and also requires that the strain rate normal to the zone boundaries increase to implausibly
high values soon after the onset of oblique convergence (transpressional motion). The latter contradicts with the observation that transpressional
motion can be sustained throughout an orogeny. The assumption that zone boundaries are fixed to material planes is unrealistic. The outstanding
problems of current transpressional models are resolved in this paper by allowing the zone boundaries to migrate through the rock material. The
consequence of zone boundary migration for the strain field and kinematics within a transpressional high-strain zone is investigated mathemat-
ically. The implications of the modeling for fabric interpretation are discussed. The modeling makes general predictions consistent with observed
planar and linear fabric patterns in natural transpressional high-strain zones. It predicts that foliations in transpressional high-strain zones are
subparallel to the zone boundaries regardless of variation in the imposed boundary conditions. Lineations cluster along the great circle girdle
subparallel to the average foliation. The spread of the lineations may vary from point maxima to complete girdles.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction the tectonic evolution of its hosting orogenic belt (e.g., Holds-

worth et al., 1997; Tommasi and Vauchez, 2001; Ben-Zion and

Most orogens, active convergent plate boundaries, and vol-
canic arcs are developed under oblique convergence between
plates or blocks (e.g., Fitch, 1972; DeMets et al., 1990;
McCaffrey, 1992, 1994) and host many orogen-parallel crustal
scale fault systems in the brittle part of the lithosphere and
high-strain zones in the ductile part of the lithosphere. Once
established, a crustal scale fault and high-strain zone system
can be active for a long time and exert a major control on

* Department of Earth Sciences, University of Western Ontario, London,
ON, Canada N6A 5B7. Tel.: +519 661 3192; fax: +519 661 3198.
E-mail address: djiang3 @uwo.ca

0191-8141/$ - see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsg.2007.09.007

Sammis, 2003). These fault/high-strain zone systems collec-
tively accommodate most of the relative motion between the
bounding plates or blocks and commonly partition the overall
oblique motion into more nearly thrust-like motions along
shallowly- to moderately-dipping zones and more strike-slip-
like motions along steeply-dipping to vertical zones (cf. Fitch,
1972; McCaffrey, 1992, 1994; Jones and Wesnousky, 1992;
Bowman et al., 2003). Within each of these zones, the defor-
mation is generally transpressional (Harland, 1971; Sanderson
and Marchini, 1984), combining a boundary-normal shorten-
ing (thinning of Jiang and Williams, 1998) motion with
a boundary-parallel simple shear motion. Because in general
the simple shear component is not parallel to any of the
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principal directions of the thinning, pure shear component, the
resulting deformation path in a transpressional zone within
a plate-boundary region is generally triclinic (Jiang and Wil-
liams, 1998; Lin et al., 1998; Jiang et al., 2001). Studying
the deformation history of crustal scale transpressional high-
strain zones in orogenic belts may help to unravel the ancient
slip partitioning across the belt and lead to better understand-
ing of the responsible tectonic processes. Great efforts (see
Jiang and Williams, 1998 and references therein) have been
devoted to establishing the quantitative relationship between
the boundary conditions of transpression and the strain geo-
metry and kinematics within the deforming zone since
McKenzie and Jackson (1983) and Sanderson and Marchini
(1984), in recognition that this is the basis for using small-
scale structural studies to reconstruct the deformation history
of high-strain zones (e.g., Ramsay and Graham, 1970;
Mattauer et al., 1981; Lister and Williams, 1983; Williams
and Jiang, 2005). However, many fundamental problems
remain unsolved, as discussed below.

1.1. Outstanding problems of transpression modeling

McKenzie and Jackson (1983) first used a continuum ap-
proach to relate the finite strain, palaecomagnetism, and fault
movements within a deforming zone to the boundary move-
ment conditions. Sanderson and Marchini (1984) investigated
the finite strain inside a vertical tabular zone bounded by two
obliquely converging rigid walls (Fig. 1a). In their model, the
deformation in the zone is assumed homogeneous. A strain
compatibility problem arises at the margins of the deforming
zone because the rigid walls and the homogeneously deform-
ing tabular zone must be separated by faults (Fig. 1a) unless
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the deforming zone is undergoing simple shear (e.g., Sander-
son and Marchini, 1984; Schwerdtner, 1989; Robin and Cru-
den, 1994). Although Sanderson and Marchini’s model has
been extended to more general cases of monoclinic progres-
sive deformation (Fossen and Tikoff, 1993; Tikoff and Fossen,
1993; Jones and Tanner, 1995; Jones et al., 1997) and triclinic
progressive deformation (Jiang and Williams, 1998; Lin et al.,
1998; Jiang et al., 2001; Jones et al., 2004), the strain compat-
ibility problem remains not satisfactorily solved.

Robin and Cruden (1994) suggest a solution using hetero-
geneous strain across the deforming zone that maintains con-
tinuity with the rigid walls (Fig. 1b). Lin et al. (1998) assume
that the bounding wall rocks undergo the same rate of pure
shear as the deforming zone and therefore remain compatible
with it. In this case, the deforming zone differs from the coun-
try rock only by its shear strain parallel to the zone boundary.
However, neither proposal is without problem. The model of
Robin and Cruden (1994) is based on Jaeger (1964, p. 140—
142). The flow in the deforming zone is made of two compo-
nents: one due to the zone boundaries approaching one another
(the convergence component) and the other due to the bound-
ary-parallel movement (the shear component). The conver-
gence component causes an extrusional flow which, as
Jaeger (1964, p. 140—142) shows, should cause a great tec-
tonic overpressure (Robin and Cruden, 1994) at depth of the
zone. There is no petrological evidence for such elevated pres-
sure in any natural transpressional zones (cf. discussion in
Williams et al., 2006). Further, this model predicts that folia-
tions should be oblique to the zone boundaries near the mar-
gins of the zone (Robin and Cruden, 1994; Dutton, 1997).
This is at odds with natural observations as well (Lin et al.,
1998, 1999; Czeck and Hudleston, 2003, and this paper).

(b)

Fig. 1. (a) The transpression model of Sanderson and Marchini (1984) where the flow in the zone is homogeneous and monoclinic. The boundary-normal com-
ponent of the convergence induces a pure shear strain rate (¢) and the boundary-parallel component induces a simple shear strain rate () in the zone. The dis-
placement is discontinuous across the zone boundaries between the deforming zone and the walls. (b) The model of Robin and Cruden (1994) in which the flow is
heterogeneous across the zone and with depth. Displacement is continuous across the zone boundaries. For both models, the zone boundaries are fixed to material

planes. xyz, The coordinate system used in this paper; «, convergence angle.
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Lin et al. (1998, 1999) point out that the pure shear compo-
nent of a high-strain zone is distributed over a much broader
area than is the simple shear. To the first approximation, this
may justify the assumption that the country rock has under-
gone the same rate of pure shear as the deforming zone. How-
ever, for a transpressional zone with a significant pure shear
component, some degree of concentration of the rate of pure
shear within the zone is likely. Allowing the pure shear strain
rate to concentrate in the zone leads to another problem: the
pure shear component acts to thin the zone (Jiang and Wil-
liams, 1998), which causes the pure shear strain rate, measured
by vertical stretching (¢), in the deforming zone, to increase
rapidly with time according to &(¢) = &y/(1 — & -t) (Appendix
A), if the two blocks converge at a constant velocity (&g is the
pure shear strain rate at the time of the onset of deformation)
(Fig. 2a). Take a vertical transpressional zone with a conver-
gence angle (« in Fig. 1a) of 30° for example. For a relative
convergence velocity of 50 mm/year accommodated in
a plate-boundary zone of 200 km wide (Schulmann et al.,
2003), the pure shear strain rate would increase more than
three orders of magnitude after some 8 million years of defor-
mation (Fig. 2a). This would imply a phenomenal increase in
stress in the zone unless the rocks weaken by the same orders
of magnitude, which is in general unlikely. Alternatively, if the
boundary condition is determined essentially by a constant
stress (which, to the first approximation, is equivalent essen-
tially to a constant strain rate ¢ = ¢&p), the boundary-normal ve-
locity (V,,) must drop exponentially according to V,(¢) =
Vi o-exp(—&o-t) (Appendix A) (Vyo is the initial velocity value
at the onset of deformation) (Fig. 2b). Using the same example
of a vertical transpressional zone with a convergence angle of
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30°, the relative convergence velocity the zone can accommo-
date must drop to less than 30% of its initial value after some 10
million years of deformation if the pure shear strain rate in the
zone is to remain constant. This would suggest that transpres-
sional motion cannot be sustained for a long time, a conclusion
contradictory to the observation that transpressional zones can
last an entire orogeny of tens of million years or longer.

1.2. The patterns of linear fabrics in natural
transpressional high-strain zones

In addition to the strain compatibility and motion sustainabil-
ity problems, current transpression models cannot explain a re-
peatedly observed lineation pattern in natural transpressional
zones. Natural transpressional zones have similar and simple
planar fabrics. They have a dominant composite foliation which
developed by transposition due to non-coaxial progressive de-
formation. This composite foliation is commonly defined by
a compositional layering, which is typically of mixed origin,
and is subparallel to the zone boundary. There may be another
foliation defined by grain-shape fabric inclined to the transposi-
tion foliation. This is interpreted as an S-foliation (commonly
a steady-state foliation of Means, 1981), in normal shear zone
usage (Berthé et al., 1979). Lineations in natural transpressional
high-strain zones are more variable in terms of geometrical pat-
terns. They may form point maxima parallel to the shear direc-
tion or normal to the shear direction (e.g., Ramsay and Graham,
1970; Sanderson and Marchini, 1984; Tikoff and Greene, 1997),
define half great circle girdles along the average foliation (Lin
et al., 1998; Jiang et al., 2001; Lin and Jiang, 2001), or spread
over the whole great circle subparallel to the zone boundary
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Fig. 2. The consequences of zone boundaries fixed to material planes. (a) The pure shear strain rate in the zone increases rapidly soon after the onset of trans-
pressional motion if the convergence velocity is constant. (b) V,,, the boundary-normal component of the convergence velocity, must decrease exponentially if
the strain rate in the zone remains constant. The curves are calculated based on an oblique convergence rate of 0.25 per million year, equivalent to that of a trans-
pressional system of 200 km wide subjected to a relative convergence velocity of 50 mm/year. This convergence rate is used for all calculations in the paper.



D. Jiang | Journal of Structural Geology 29 (2007) 1984—2005 1987

(Czeck and Hudleston, 2003; Xu et al., 2003; Bentley, 2004).
The whole great circle girdle pattern of lineation in natural
transpressional high-strain zones is unexplained by any current
models of transpressional zones.

1.3. A sustainable transpression model

Both the strain compatibility problem and motion sustain-
ability problem can potentially be resolved by considering
the migration of the deforming zone boundaries through
rock material into hitherto undeformed country rocks (widen-
ing, in the sense of Means, 1995) so that the active deforming
zone remains more or less a constant thickness to ensure a con-
stant bulk strain rate for a constant boundary velocity. In this
scenario, the wall rocks are fed into the deforming zone grad-
ually and displacement continuity between the active deform-
ing zone and the bounding blocks can be maintained
throughout deformation. It is also of interest to investigate
whether incorporating zone boundary migration into the
model may generate the lineation pattern that spreads the
whole great circle girdle along the average foliation as re-
ported for many natural transpressional zones.

The concept of a deformation front migrating through rock
material to maintain a roughly constant pure shear strain rate
in the active deforming zone is not new (Ben-Avraham and
Nur, 1976; Dewey et al., 1986). Dewey et al. (1986) estimate
that the average pure shear strain rate for the Alpine/Himalayan
convergent zone remains roughly 1.5 x 10> s ™', although the
convergence rate varies from 10 to 50 mm/year, and the width of
the deforming zone, as defined by earthquake distribution,
ranges from a few hundred to several thousand kilometers.
White et al. (1980) suggest that, to accommodate a given im-
posed displacement rate, a critical volume of mylonite must de-
velop and a shear zone will grow laterally until this is achieved.
Means (1995) specifically discusses narrowing and widening
shear zones. However, the consequence of boundary migration
for the strain and kinematics in transpressional high-strain zones
has not been generally investigated (see however Dutton, 1997).

In what follows, I investigate the strain geometry and kine-
matics of high-strain zones in which thinning of the zone
(Jiang and Williams, 1998) is balanced by the outward migra-
tion of the zone boundaries (““widening” of Means, 1995). 1
am principally concerned with the variability of the finite
strain geometry and kinematics of deformation, and its rela-
tionship with the boundary conditions. I will start with the
simplest situation where the flow in the zone is homogeneous.
To test the stability of the predictions of this simple model, I
then consider a heterogeneous case where the simple shear
strain rate in the zone varies. Finally, the model predictions
are discussed in the context of natural data.

2. Mathematic description of transpression zones with
migrating boundaries

Three different approaches have been used in strain and
kinematics modeling of high-strain zones: the finite deforma-
tion approach (Ramsay and Graham, 1970; Sanderson and

Marchini, 1984; Jones and Tanner, 1995; Jones et al., 1997,
2004, the steady-state incremental deformation approach (cf.
Elliott, 1972; Fossen and Tikoff, 1993; Tikoff and Fossen,
1993), and the rate of deformation approach (cf. Ramberg,
1975; Jiang and Williams, 1998; Lin et al., 1998). The present
paper uses the rate of deformation approach because it can han-
dle both steady and non-steady progressive deformation readily
and because the kinematic significance of deformation is the
most explicit in this approach (Truesdell and Toupin, 1960, p.
349).

2.1. The homogeneous flow case

In the event the convergence velocity between bounding
blocks is perfectly horizontal, there exists a horizontal plane
called the “floor of transpression (FOT)” (Fig. 3a, b). The
rock material above the FOT will move upward and that below
the FOT will move downward unless the FOT is a detachment
surface (cf. Royden, 1996; Schulmann et al., 2003; Little,
2004).

Fig. 3 shows the homogeneous flow case considered in this
paper. It assumes (1) the active zone thickness is constant (thin-
ning is balanced by widening), (2) the flow in the deforming zone
is homogeneous and constant with time, and (3) the flow in the
deforming zone is symmetric about the central plane of the
zone. To describe this model mathematically, a right-handed co-
ordinate system, xyz, is set up with its origin on the FOT and at the
center of the zone, the x-axis perpendicular to the zone boundary,
the y-axis parallel to the strike of the zone, and the z-axis parallel
to the dip line and pointing upward (Fig. 3a, b). The following
external variables are necessary to define the model:

D: half thickness of the zone,

V: half of the relative velocity between the bounding
blocks,

«: convergence angle, the angle between the horizontal
component of V and the strike of the zone, and

B: dip angle of the zone.

In terms of instantaneous flow, the model is reduced to the
Sanderson and Marchini model when 8 =90° and to the tri-
clinic model of Lin et al. (1998) when 0 < § < 90°. However,
even for these end-member cases the finite strain geometry of
the current model is distinct from previous models because the
migration of zone boundaries is considered.

If it is assumed that the relative velocity V is perfectly hor-
izontal, the strain rates in the zone are, respectively:

. %4

&, = B

. Vsinasinf | . ing
& =—————— = ¢, sin sin

! D ' (1)
. Vcosa . .
Yes = = &, cosa = & cota cscfB
D

. Vsinacos@ . . .
Yos = ———— = &, sina cosf = & cotfS

D
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Fig. 3. Sustainable transpressional models with migrating zone boundaries investigated in this paper. (a) and (b) show, respectively, a vertical transpressional zone
and an inclined (8, the dip angle) one. There is a horizontal plane, called the ““floor of transpression” (FOT), which is either a decoupling plane (possible for both
vertical and inclined transpression) or the plane of no shear stress for a vertical transpression zone. The deforming zone has a constant thickness throughout de-
formation when thinning is balanced by widening. (c)—(f) are cross sections for the vertical zone case schematically showing the progressive development. Even
for the simplest situation where the flow in the zone is homogeneous, a strain gradient develops across the zone because the country rocks are fed into the zone
progressively. There is no displacement discontinuity across the zone boundaries and no excess tectonic overpressures will build up at the depth of the zone.

where ¢&,, & ¢ and g4 are, respectively, called the oblique
convergence rate, the pure shear strain rate, the strike-slip sim-
ple shear rate, and the dip-slip simple shear rate. If the relative
velocity has a plunge angle (6 # 0°, Fig. Al), the strain rates
are related to boundary conditions by Eq. (A7) (Appendix B,
Fig. Al). In the following, only the situation of 6 =0° is
considered.
The Eulerian velocity field in the deforming zone is:

_ d_x =&, |x|<D (2a)
YT dr | —éD-sign(x), |x|>D
dy  [vex, <D
== ¥ = 2
Yy dr { 7SSD-51gn(x), |X| >D ( b)
dz Yasx +éz, |x| <D
R B i o 2
n=g { FuD-sign(x), |1 > D (2e)

where v,, vy, and v, stand for the velocity components along
respective coordinate axes.

Note that although the z-component of velocity is discon-
tinuous at the zone boundaries (Jx| = D) for z # 0, the dis-
placement is continuous there because of the advective
effect that the wall rocks are fed into the active zone gradually.
This will become clear when expressions for the displace-
ments are obtained later (see Fig. 4).

Writing Egs. (2) in coordinates normalized against D, we
have:

dx’ —&x', | <1
/o D ) —=
BT ar {—é-sign(x’), || > 1 (3a)
dyl /Y x/ |xl| < 1
/T — Ss7v =
T {q’/ss~sign(x’), |x'| >1 (3b)
dz Yo' +87, ¥ <1
- / s ) ) = 3
YT {'Yds'SIgn(xl)a > 1 G¢)
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Fig. 4. A snapshot at t =20 million year of the z-coordinates across the zone
(against the horizontal Lagrangian coordinate X ) for particles at initially dif-
ferent Z-values. TB marks the position of the current zone boundaries across
which continuity is maintained. The corresponding Eulerian coordinate x is
at the top of the diagram, and x = +1 represents the active zone boundaries.
Coordinates are all normalized against half thickness of the active zone.

where the primes stand for normalized coordinates (i.e., X' = x/
D, y =y/D, and 7 =z/D). Only normalized coordinates are
used hereafter and the prime signs are omitted.

Y + cota cscf X(1 —exp(—ér)), if [X]| <1 (i)
Y + cota cscB(X — sign(X)exp( — & + [X| — 1)),

Y= if [X|>1 and 1> ¢ (ii)
Y + sign(X)é cota cscf-¢, otherwise (iii)
(4b)
Zexp(ét) + Xcot@ sinh(ér), if |X] <1 (i)
,— < (Z+XcotB)exp(ér — [X| + 1) — cotf cosh(ér — [X] + 1),
if [X|>1 and t> £ (ii)
Z + sign(X)étcot, otherwise (iii)
(4¢)

In Egs. (4) and the following equations, £ = (|X| —1)/¢
(see Eq. (A9) in Appendix C).

Egs. (4a-i), (4b-i), and (4c-i) are for materials that have been
involved in deformation since the onset of deformation (the
central domain). Eqs. (4a-ii), (4b-ii), and (4c-ii) are for mate-
rials in ‘the marginal domain’ that were initially (at = 0) out-
side of the deforming zone but were inside the zone at time .
Eqgs. (4a-iii), (4b-iii), and (4c-iii) describe the (rigid-body)
motion for materials that remain outside of the zone throughout
deformation.

One can now use any equation from the set of Egs. (4) to
verify that continuity in displacement is maintained at the
zone boundaries (x = £-1) throughout deformation (Fig. 4).

From Egs. (4), the position gradient tensor F(x, z, t) (with
components: Fj; = 0x;/0X; where i, j=1, 2, 3) for different
domains can be obtained as follows:

exp(—ét) 0 0
cotacscB(1 —exp(—ér)) 1 0 , if |x| <exp(—ér), (central domain) (a)
cotf3 sinh(ér) 0 exp(ér)
|x| 00
F(x,z,t) = cota cscfi(1 — |x]) L0 if exp(—ér) < |x| <1, (marginal domain) (b) (5)

—sign(x)z + cotf ()lc -x) 0 |%|
1 00
0 1 0], otherwise (wallrocks) (c)
001

Solving Egs. (3) (Appendix C) yields the relationship be-
tween the Eulerian coordinates (x, y, z: the current position
of a material particle at time 7) and the Lagrangian coordinates
(X, Y, Z: the initial position of the same material particle at
t =0) as follows:

Xexp(—ér), if |X|<1 (i)
= sign(X)exp( —ér+ |X| — 1),
if |X]>1and¢>¢ (ii)

X —sign(X)ét, otherwise (iii)

(4a)

2.2. The simple shear concentration case

If the simple shear components (75, and v4s) vary with x,
the Eulerian and Lagrangian coordinates are related by (Ap-
pendix D):

Xexp(—ét), if [X|<1 (i)

Y= . sign(X)exp( — & + |X| — 1), )
if [X|>1and r>¢§ (ii)

X —sign(X)ét, otherwise (iii)

(6a)
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exp(—ér)de |, if |X|>1and r>£€ (i)

\ Z +sign(X)ét cotB, otherwise (iii)

To obtain analytical expressions for the integral terms in the
equation set, consider a special heterogeneous case in which
the simple shear components are of the forms:

Y55 (x) = Técota cscf cos (Zx)

Egs. (7) describe a situation where the simple shear strain
rates reach their maxima ((7v/2)écota cscf and (7/2)écot(,
respectively) at the center of the zone (x=0) and drop to
zero at the margins (x = =1). The particular forms of Eqgs.
(7) are chosen because they yield the average simple shear
rates across the zone equal to the imposed values
(écota cscB and écotf for v and 7y, respectively). Inserting
Egs. (7) into Egs. (6), taking F;; = (0x;/0X;), and making use
of the identity lim (sinx/x) = 1, the position gradient
tensor is obtained ‘as follows:

3. Finite strain patterns

With Eqgs. (5) and (8), it is possible to investigate the evo-
lution of the finite strain field across the zone and with depth
for any given set of external variables, that is, to relate the
strain field within the deforming zone with the boundary con-
ditions of transpression. The finite strain can be calculated by
taking the eigenvalues and eigenvectors of the ‘left Cauchy—
Green tensor’, C, which can be constructed from the position
gradient tensor F (Truesdell and Toupin, 1960; Spencer, 1980).
Written as a function of position and time, C is:

C(x,z,0) =F(x,z,1) - F(x,z,1)" 9)

The eigenvalues of C are the magnitudes of the three prin-
cipal quadric stretches (4;, A,, and A3) of the finite strains
whereas their corresponding eigenvectors are the principal
axes’ orientations in the deformed state.

(7) In the following, all computations are carried out with Math-
Yas(x) = Fécot8 cos (3x) Cad, a commercial software by Mathsoft Engineering &
( :
exp(—ét) 0 0
i .
Seota cscB(1 —exp(—ét)) 1 0 Cifx=0
gcotﬁ sinh(ét) 0 exp(ér)
exp(—ét) 0 0
t
7(;;:&:])6 (sin (gxexp (et)) —sin (gx) ) 1 0
. (TC , . (TC T . T ’
2c0t8 [ = ( Sin (§xexp (et)) sin (Ex) cos (Exexp (st)) —cos (Ex)
= - - + > - 0 exp(ét)
F(x,z,1) = < 0 2 X xexp(ét) x2exp(ét) (8)
if |x| <exp(—ét) and x#0
( x-sign(x) 0 0
cota cscf <1 — sin (gx) sign (x)) 1 0

1 00
010],
\ \0 0 1

otherwise

\ —sign(x)-z 4 x-cotf-sign(x) (1 — x-sin (gx)> 0

, if exp(—ér) < |x| <1

x-sign(x)
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Education, Inc. (2002). Like in Fig. 2, the strain rates are based
on a convergence rate &, = 7.93 x 10715 s~! or 0.25 Myr ',
equivalent to a transpressional belt of 200 km wide subjected
to a relative convergence velocity of 50 mm/year. It should be
noted that since only the strain geometry and kinematics are con-
cerned, it does not matter what rate one uses; a faster rate enables
the system to reach a certain strain state sooner, but does not
change the strain geometry or kinematics.

3.1. The shape of finite strain ellipsoid

Figs. 5 and 6 present the Flinn diagrams of the finite strain
evolution following material particles for the homogeneous

flow case and the simple shear concentration case,
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respectively. For the homogeneous flow case (Fig. 5), if
8 =90° the evolution paths for particles in the central domain
(IX| < 1) or on the FOT (Z=0) are like those for homoge-
neous monoclinic transpression (Fossen and Tikoff, 1993;
Tikoff and Fossen, 1993; Tikoff and Teyssier, 1994; Dewey
et al.,, 1998). The Flinn curves for a <19.5° (¢ =10° is
shown in Figs. 5a, 6a, b) are characterized by their bouncing
off the abscissa. The Flinn curves for a > 19.5° are mono-
tonic. In the marginal domain the bouncing off does not occur
(Fig. 5b). The bouncing off is missing everywhere if § # 90°
(Fig. 5c, d).

All statements made above for the homogeneous flow case
are also appropriate for the simple shear concentration case
(Fig. 6). The bouncing off of the path curves only occurs in
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Fig. 5. Flinn diagrams showing evolution paths of the finite strain ellipsoid following material particles for the homogeneous flow case. (a) For the central domain
of a vertical zone at any depth or the marginal domain on the FOT of a vertical zone. (b) For the marginal domain at Z= 0.5 of a vertical zone. (c) For the central
domain of an inclined zone at any depth or the marginal domain on the FOT of an inclined zone. (d) For the marginal domain at Z = 0.5 of an inclined zone.
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Fig. 6. Flinn diagrams showing evolution paths of the finite strain ellipsoid following material particles for the simple shear concentration case.

discussion.
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the central domain (center of the zone X=0 or |X| <1,
Fig. 6a, b) of vertical transpressional zones with low conver-
gence angles.

3.2. Strain intensity field
To measure the magnitude of the finite strain I adopt the

strain intensity, S, defined by Ramsay and Huber (1983, pp.
201—202) as:

3172 2 32 2

S=|Z5—-1]) +[Z5 -1
;{;/2 /1;/2

(10)

Fig. 7 presents the variation of S across the zone (only the
range 0 <x <1 is shown because the zone is assumed to be
symmetric about the central plane) for different convergence

(a) 15

o=0" \

0 0.25 0.5 0.75 1

angles. All curves show rather simple profiles: a constant value
in the central domain followed by an exponential decrease in
the marginal domain for the homogeneous flow case, and more
smooth variation for the simple shear concentration case. The
profiles do not vary significantly with depth. The profiles are
comparable to observations from natural shear zones inter-
preted to have undergone simple shear (e.g., Ramsay and
Graham, 1970, Ramsay and Allison, 1979).

3.3. Variation in the orientations of the principal strain
axes across the zone and with depth

Figs. 8—11 are lower hemisphere equal-area projection of
the A;- and As-axes across the model zones of various -
and (-values and at different depth levels. The left column
of each figure is for the homogeneous flow case and the

(c) 15

10

(d)

15

10

Fig. 7. Finite strain intensity (S) across the zone (because of symmetry, only variation over 0 <x <1 is shown) for different -, §-, and z-values at the time
t =10 Myr, for the homogeneous flow case (a and b) and the simple shear concentration case (c and d).



1994 D. Jiang | Journal of Structural Geology 29 (2007) 1984—2005

right column for the simple shear concentration case. Differ-
ent diagrams in each column are for different depths. For all
cases, the strain geometry does not vary significantly with
depth.

Fig. 8 is for a vertical (8 = 90°) model zone with a« = 10° at
different depth levels. The coordinate axes and sense of shear
of the zone are shown in Fig. 8e. The two sets of orientation
trajectories for A;- and Az-axes in each stereonet of Fig. 8
and subsequent Figs. 9—11 correspond to the two sides
(-1 <x<0, and 0 < x < 1, respectively) of the zone. On the
FOT (z=0) for both the homogeneous flow case (Fig. 8a)
and the simple shear concentration case (Fig. 8f) or in the cen-
tral domain of the homogeneous flow case (Fig. 8e), the finite
strain axes are like those for the monoclinic Sanderson and
Marchini transpression zone. The small table in Fig. 8e lists
the strain magnitude (S) corresponding to each set of A;-
and As-plot. Both A; and A3-axes plot on the horizontal plane,
and at high strains (S > 93 for the current set of parameters)
A-axes are vertical (Fig. 8e). For both the homogeneous
flow case and the simple shear concentration case, the A3-
axes across the zone at any given level define a simple point
maximum (Turner and Weiss, 1963, p. 58) close to the normal
to the zone boundary (x-axis). As the center of the zone is ap-
proached (up the strain gradient, arrows in Fig. 8), the A3-axes
approach the zone normal. For the simple shear concentration
case, the A3-axes converge to the horizontal plane faster than
the homogeneous flow case. The A;-axes across the zone ex-
hibit a widespread for both cases. If lower strain (S < 2.5,
empty dots in Fig. 8) points are neglected (fabrics may be
too weak to observe at such low strains), the A;-axes across
the entire zone (—1 < x < 1) approximately define a great cir-
cle girdle (Turner and Weiss, 1963, p. 58) subparallel to the
zone boundary. In the simple shear concentration case (right
column) the Aj-axes converge to a great circle, as strain in-
creases, faster than the homogeneous flow case.

Fig. 9 is for a vertical transpressional zone (8 = 90°) with
a=30° at different depth levels. The coordinate system and
sense of shear are the same as Fig. 8e. All statements made
for Fig. 8 on the A3-axes are applicable, en masse, to this sit-
uation. The A;-axes, however, all pitch close to down dip on
the A;4; plane. If lower strain (S < 2.5) domains are neglected,
the A;-axes practically define a vertical point maximum.

Fig. 10 is for an inclined model zone (8=70°) with
a=10° at different depth levels. The coordinate axes and
sense of shear are shown in Fig. 10e. The A5-axes define a sim-
ple point maximum close to the zone normal for both the ho-
mogeneous flow and the simple shear concentration cases. The
Ar-axes are widespread. In the central domain of the homoge-
neous flow case, the Aj-axes lie close to parallelism with the
zone boundary at high strains (S > 17, Fig. 10e). The small ta-
ble in Fig. 10e lists the strain magnitude (S ) corresponding to
each orientation). In the marginal domains (Fig. 10a, b, c, d),
the A;-axes define a great circle like girdle subparallel to the
zone boundary if lower strain data are neglected. At extremely
high strains (S > 20, stars), the A;-axes define a very good
great circle girdle. For the simple shear concentration case
(Fig. 10f, g, h, and i), the A;-axes converge to a great circle

subparallel to the zone boundary faster than the homogeneous
flow case as the center of the zone is approached (up the strain
gradient, arrows in the figure).

Fig. 11 is for an inclined model zone (8= 70°) with
a=30° at different depth levels. The coordinate axes and
sense of shear are shown in Fig. 11e. Again, the A3-axes de-
fine a simple point maximum close to the zone normal. The
A-axes also define a simple point maximum close to the
dip line of the zone boundary if lower strain (S < 2.5) data
are neglected. In the central domain of the homogeneous
flow case, the Aj-axes lie close to parallelism with the zone
boundary at high strains (S > 7.7, Fig. 11e. The small table
in Fig. 1le lists the strain magnitude (S) corresponding to
each orientation.).

In summary, the modeling predicts that the A;4, planes are
always subparallel to the zone boundary regardless of the
boundary conditions. The A;-axes cluster along the great circle
subparallel to the zone boundary if lower strain cases are ex-
cluded. The A;-axes also tend to be widespread in pitch, defin-
ing a great circle like girdle at high strains, for model zones
with low convergence angles. Simple shear concentration
also strengthens girdle-like patterns. As the angle of conver-
gence increases, the spread in the pitch of A;-axes shrinks
and the A;-axes tend to define a point maximum parallel to
the dip line of the zone boundary.

We can better understand the patterns of A;-axes as a func-
tion of @ and § by introducing two other parameters: the ratio
of the simple shear to pure shear in the zone (R) and the pitch
of the shear direction on the shear plane (¢). Both are related
to « and G:

) -2
R—= %d = \/c()tzoz CSC25+COt2ﬁ (11)

&

¢ =tan"' <%> = tan"' (tana cos) (12)

In Fig. 12, isolines of R and ¢ are drawn on the a—@ map.
Where ¢ < 10°, the high-strain zone is essentially strike slip,
and where ¢ > 80° it is dip slip. Oblique-slip is 10° < ¢ < 80°.
When R is high (>20), the strain geometry of the zone is es-
sentially indistinguishable from that of zones of simple shear
(Lin et al., 1998, 1999; Jiang and Williams, 1998). According
to the present modeling, there are two possible A;-axis pat-
terns. The A;-axes can define point-maxima-like patterns either
parallel to the shear direction when R > 20, or parallel to the
maximum principal stretch direction of the pure shear compo-
nent (for transpressional high-strain zones, this is parallel to
the dip line of the zone) at low R (Fig. 12). In a region roughly
defined by 5° < o < 25° (the range in « also depends weakly
on (3, see Fig. 12) and ¢ < 25° (Fig. 12), the A;-axes spread
more widely forming girdle-like patterns with the girdle sub-
parallel to the high-strain zone boundaries. Fig. 12 covers
high-strain zones of all dip angles, but § > 45° is appropriate
for transpressional high-strain zones.
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(a) (f)

(b) (9)

(c)

(d)

(e)

Fig. 8. Lower hemisphere equal-area projection of the A;-axes (S < 2.5, empty small circles; 2.5 < S < 20, solid small circles; and S > 20, cross stars) and Az-axes
(S < 2.5, empty squares; 2.5 < § < 20, solid squares; and S > 20, cross stars) across the zone (—1 < x < 1) for a vertical zone with « = 10° at different depths. The
left column (a—e) is for the homogeneous flow case and the right column for the simple shear concentration case. See text for details.
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(d)

(e)

(f)

(9)

(h)

Fig. 9. Lower hemisphere equal-area projection of A;- and A3-axes for a vertical zone with o =30°. Symbols are the same as Fig. 8. The left column is for the
homogeneous flow case and the right the simple shear concentration case. See text for details.

3.4. The stability of monoclinic (8 = 90°) solutions:
the problem of ‘lineation switch’

The present modeling shows that as the zone approaches
vertical (8 — 90°), if « is between 3° (equivalent to R =20)
and 19.5°, the A;-axes define girdle-like, rather than point-
maximum-like patterns. This is different from the conclusion
of Fossen and Tikoff (1993). Fossen and Tikoff (1993) show

that for monoclinic (8 = 90°) transpression, if 0° < o < 19.5°,
the A;-axis is horizontal initially, but as the strain reaches cer-
tain value dependent on «, the A;-axis and the A,-axis swap
and the A;-axis ‘switches’ to vertical thereafter. In terms of
the evolution of the shape of the finite strain ellipsoid, at
the instant of the swapping of the A;- and A,-axes, the strain
ellipsoid is perfectly oblate and plots in the Flinn diagram on
the abscissa (Figs. 5a, 6a). This phenomenon has been called
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Fig. 10. Lower hemisphere equal-area projection of A;- and A3-axes for a zone with « = 10° and § = 70°. Symbols are the same as Fig. 8. The left column is for the
homogeneous flow case and the right one for the simple shear concentration case. See text for details.
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Fig. 11. Lower hemisphere equal-area projection of A;- and A3- axes similar to Fig. 8 for a zone with « = 30° and § = 70°. Symbols are the same as Fig. 8. The left
column is for the homogeneous flow case and the right one for the simple shear concentration case. See text for details.
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Fig. 12. The variation of A;-axis pattern on the a«—@ map for high-strain zones. Isolines of the simple shear to pure shear ratio (R) and the pitch of the shear di-
rection (¢) are shown. The A;-axis pattern defines point maxima except in the domain ““girdle-like linear fabric”. In this domain the A,-axis tends to spread along
a girdle subparallel to the zone boundary. Cases presented in the paper are shown.

the ‘lineation switch’ (e.g., Tikoff and Teyssier, 1994; Schul-
mann et al., 2003) and has been applied to interpret natural
transpressional high-strain zones (e.g. Tikoff and Greene,
1997).

The monoclinic solution of Fossen and Tikoff (1993) is
mathematically unstable. Consider the consequence of a slight
deviation from the perfect monoclinic condition by giving
a small perturbation in the pitch of the shear direction (¢)
from exact zero. Fig. 13 shows that for any ¢ # 0°, the
Ar-axis rotates progressively (Fig. 13c), rather than ‘switches’
instantaneously (Fig. 13b), from horizontal to vertical as strain
increases. Therefore, an infinitesimally small deviation from
the perfect condition of monoclinic symmetry (here equivalent
to 8 =90°) will render the lineation orientation to change pro-
gressively, in a continuous manner, from horizontal to vertical,
rather than to switch instantaneously, in a discontinuous man-
ner, from horizontal to vertical. Discontinuous lineation switch
cannot be applied to natural transpressional zones because
perfectly monoclinic transpression without even infinitesimal
perturbations cannot exist in nature. The A;-axis pattern is pre-
dicted to be girdle-like for vertical transpressional zones with
the convergence between 3° and 19.5°.

4. Discussion
The modeling results for both the homogeneous flow case

and the simple shear concentration case are very similar, at-
testing to the stability of the mathematical solutions and

suggesting that if simple shear concentration profiles different
from Egs. (7) were chosen for the modeling, similar results
would be obtained.

4.1. Lineation patterns

The present model predicts simple patterns for the A;4,-
plane across the zone. The prediction that the A;-axis can
spread over a complete girdle at low angles of convergence
is new. Previous monoclinic models predict point maxima
Aj-axis patterns and previous triclinic models can produce
“J-shaped” or half girdle-like A;-axis patterns (Lin et al.,
1998; Jiang and Williams, 1998). If the assumption is made,
as in many studies (e.g. Ramsay and Graham, 1970; Tikoff
and Greene, 1997; Jiang and Williams, 1998; Lin et al.,
1998; Lin and Jiang, 2001), that the principal strain axes are
directly related to the foliations and lineations, the model pre-
dictions are consistent with the observation that foliation pat-
terns in transpressional zones are simply subparallel to the
zone boundary. The present model provides an explanation
for some stretching lineation patterns that spread over almost
the entire girdle subparallel to the zone boundaries (Czeck and
Hudleston, 2003; Xu et al., 2003; Bentley, 2004).

Can the girdle-like lineation pattern across a transpressional
high-strain zone be explained by the variation in the pitch of
the shear direction on the shear plane (e.g. Fig. 13c)? It can
not, at least for reported natural examples. For this explanation
to work, there must be domains between shallowly plunging
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Fig. 13. The “lineation switch” based on monoclinic models is mathematically unstable. (a) Perfect monoclinic transpression deformation if ¢ = 0°. (b) “Lineation
switch” only occurs for ¢ =0° and 0° < o < 19.5°. (c) For any infinitesimally small deviation from the perfect condition of ¢ = 0°, the lineation rotates progres-
sively, rather than switches instantaneously toward vertical. The evolution of the finite strain ellipsoid shape for small ¢ (d) is similar to the case of ¢ =0° (e). But
the ellipsoid never passes through the perfect oblate state when ¢ # 0°. See text for discussion.

lineations and steeply plunging lineation where the strain el-
lipsoid is close to perfectly oblate (Fig. 13d); these domains
should be characterized by an absence of lineations. This
has not been observed for any natural examples.

4.2. Complex strain geometry as a result of zone
boundary migration

Although very simple, the present model can predict great
geological complexity by varying the model variables.

First, a natural transpressional high-strain zone in its history
of development may result from coalescing of many zones of
strain concentration. Zone-normal convergence and zone
boundary migration enable initially subparallel and separate
shear zones to get closer and to combine into a single high-
strain zone with complex strain geometry. The foliations in
such an end product zone are expected to be subparallel to
the orogenic boundary because, regardless of the boundary
conditions, the foliations are subparallel to their hosting

zone boundaries and the merging of individual zones only
strengthens the parallelism between the foliations and the
eventual zone boundaries. The lineations in the final combined
zone may show great variability spreading on the great circle
like girdle subparallel to the zone boundary. This is because
lineations tend to cluster on the great circle girdle subparallel
to foliations and the spread on the girdle reflects the variability
in strain state and deformation history of different domains.
These predicted strain patterns have been repeatedly observed
in natural crustal scale shear zones including transpressional
zones (Czeck and Hudleston, 2003; Xu et al., 2003; Bentley,
2004; Williams and Jiang, 2005; Williams et al., 2006).
Second, the present model assumes that the deforming zone
is symmetric about its central plane. This is unlikely in nature.
The migration of the two boundaries may be at different rates
for a natural zone. This situation is easy to handle by the same
approach as this paper but by treating the two halves sepa-
rately. What is more challenging is that in a natural shear
zone, strain localization occurring within the zone and tectonic
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transposition due to ongoing non-coaxial progressive deforma-
tion may mingle the two halves, overprint and mix fabrics ini-
tially formed in the two halves of the zone. This would make it
hard, if possible, for one to divide a shear zone into its two
halves and to expect each half to have the lineation pattern
spreading like a half girdle as predicted by Fig. 8. Instead,
the general patterns would be that the foliations are subparallel
to the zone boundaries and the lineations spread widely on
a great circle like girdle parallel to the zone boundary (e.g.,
Czeck and Hudleston, 2003; Xu et al., 2003; Bentley, 2004).
In some rare cases, the two halves of a shear zone can be iden-
tified. Lin (2005) reported a good example of such a shear
zone. In the ENE trending Carrot River high-strain zone within
the Carrot River greenstone belt, vertical boundary-parallel fo-
liations are developed throughout the zone. In the NW half of
the zone (NW subzone of Lin, 2005), the lineations define
a half girdle pitching west and in the SE half (SE subzone
of Lin, 2005) the lineations define another half girdle pitching
east. Such lineation and foliation patterns are consistent with
those predicted by the current model (e.g., Fig. 8).

Third, the thinning and the widening of the zone need not
be exactly balanced. This would lead to transient variation
in the strain rates. Since the modeling results are independent
of the strain rates used, it is unnecessary to incorporate this
effect.

Fourth, strain recorded in rocks is generally incomplete,
discontinuous, and diachronic. In a continuous deformation
the ‘finite-strain clock’ may be reset by recrystallization and
other mechanisms continually (Means, 1981; Lister and
Snoke, 1984). For instance, as the zone boundaries migrate,
some domains may cease to deform transiently or perma-
nently. It is also common during deformation that new rock
material is added into the deforming system as veins, dykes,
and plutons. If the effect of zone boundary migration is not
considered, it may be possible to correlate different strain
states with the deformation history of the zone (e.g. Tikoff
and Greene, 1997). This practice becomes more problematic
in a transpressional high-strain zone with migrating bound-
aries. Consider the following scenario. Suppose at time 7 since
the onset of transpression a dyke was emplaced into the zone
and started to record deformation. To keep the argument sim-
ple, let us assume that the flow is steady. The deformation re-
corded in the dyke is described by the position gradient tensor
F(x, z, t-n). The finite deformation F(x, z, -n) would depend
on where and when the dyke was emplaced (x, z, and 7).
The strain geometry in the dyke may show great contrast
with the surrounding rocks. Yet the dyke may be subparallel
to the zone boundary as a result of tectonic transposition since
its emplacement.

Finally, fabrics may not be simply related to strain. The as-
sumption that the principal strain axes are directly related to
the foliations and lineations is not always true and the model
results should be applied where there is good reason to believe
that the assumption is valid (Lin et al., 1998). Lineations de-
fined by stretched passive clasts may track the major principal
finite strain axes (Hossack, 1968; Czeck and Hudleston, 2003).
But at high strains, an original single clast may be smeared out

into many ‘clasts’ and the lineations defined by their long axes
may not indicate the major principal axes of the total finite
strain. If the clasts are rigid (Jeffery, 1922; Jezek et al.,
1994, 1996) or deformable but more competent than the ma-
trix (Eshelby, 1957, 1959; Bilby et al., 1975; Bilby and Kol-
buszewski, 1977), then the lineation defined by their major
axes are not, in general, the major principal finite strain axes
either. Jezek et al. (1994, 1996) simulate the evolution of fab-
rics defined by rigid elements. Similar work on deformable el-
ements is necessary to understand fabrics defined by them.
Lineations defined by alignment of minerals, small-scale
fold hingelines, etc. in transpressional zones may be under-
stood by considering the rotation of material lines in transpres-
sional deformation (Fossen et al., 1994; Passchier, 1997; Jiang
and Williams, 1999). Only at very high strains, are these line-
ations subparallel to the major principal strain axes.

4.3. Relationship between bulk shortening and finite
strain in the central domain

For shear zones with migrating boundaries, it is important
to distinguish the ‘thickness of the active zone’ (T,), which
is assumed constant in this paper and probably does not vary
significantly in nature, and the ‘total thickness of rocks in-
volved in the zone deformation throughout its history’ (7).
T,=2D in the present model. T} is the unstrained thickness
of the zone. For the model of this paper, a particle currently
at the margin of the zone (x = 1) was initially in the wall rocks
at X (Eq. (4c)) which leads to:

T,
Fozl—l—ét:l—&-ln(
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where ¢ is the natural logarithm stretch along the z-direction in
the center of the zone. The average shortening across the zone,
Z}(/ 2 measured by the stretch (current length, 1, over initial
length, X)) is then:
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(14)

In the absence of detailed strain field data of a zone,
Eq. (14) provides a rough estimate of the bulk shortening of
the zone. The comparison of the estimate based on Eq. (14)
with that based on a homogeneous transpression zone is shown
in Fig. 14.

Many authors have used the kinematic vorticity number es-
timates and strain measurements to constrain the zone-normal
shortening of crustal scale shear zones (e.g. Bailey et al., 2004;
Giorgis and Tikoff, 2004). It is shown in the following that as-
suming the whole shear zone to be a homogeneous domain and
the zone boundaries to be fixed to material planes can greatly
overestimate the shortening across a crustal scale shear zone.

On the basis of vorticity and strain analysis, Bailey et al.
(2004) proposed 70% and Giorgis and Tikoff (2004) proposed
92% shortening normal to the shear zones that they studied.
Such a high component of pure shear poses significant strain
compatibility problems (Hudleston, 1999; Williams et al.,
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Fig. 14. (a) The model-based relationship between the stretch parallel to z-axis (AZI/ 2) in the central domain of a transpressional high-strain zone and the average
stretch across the zone in the direction normal to the zone boundaries (i.e. the x-direction, Zi/ 2). (b) The relationship between T/T, and A;/ 2. The interpretation
of Bailey et al. (2004) and Giorgis and Tikoff (2004) in terms of the Sanderson and Marchini model are plotted in white circles and squares, respectively. The
interpretations based on the present model are plotted as solid circles and squares. See text for more details.

2006). Giorgis and Tikoff (2004) estimate that 92% across-
zone shortening had occurred in the western Idaho shear
zone (based on an estimate of the vertical stretch of 14).
The present thickness of the western Idaho shear zone is
around 4 km. In the context of a homogeneous transpressional
zone with fixed boundaries, this implies that the zone was orig-
inally some 50 km thick. If one regards the vertical stretch of
14 as representing the strain in the central domain (not the en-
tire zone) of the zone and allows its boundaries to migrate, the
total thickness of rocks involved in the western Idaho shear
zone deformation, measured in the undeformed state, is only
around 15 km according to Eq. (13). Furthermore, in the cur-
rent model, since thinning of the zone is offset by the migra-
tion of the zone boundaries to keep the zone thickness more or
less constant, one may conclude that the thickness of the ac-
tively deforming zone of the western Idaho shear zone might
have never been significantly more than 4 km in its entire his-
tory, although the zone has ““processed”” a much thicker pack-
age of rocks.

5. Conclusions

In order to sustain a transpressional motion (oblique con-
vergence between plates and/or blocks), the boundaries of
transpressional high-strain zones must migrate through rock
material during the cause of deformation. In such high-strain
zones, displacement continuity can be maintained at the active
zone boundaries.

In high-strain zones with migrating boundaries, the strain
geometry and kinematics are more complex than previous ho-
mogeneous models with fixed boundaries. The modeling pre-
dictions are as follows. The ‘foliation’ (assumed to be normal
to the minimum principal strain axis) lies subparallel to the

high-strain zone boundary regardless of the variation in model
boundary conditions; the ‘lineation’ (assumed to be parallel to
the maximum principal strain axes) clusters along a great circle
girdle close to parallelism with the foliation. The ‘lineation’
spread may vary from point maxima to complete girdles de-
pending on the obliquity of transpression and dip angle of the
transpressional high-strain zone. These predicted fabric pat-
terns have been documented in natural high-strain zones.

In natural monoclinic transpressional zones, lineations do
not switch orientations by instantaneously swapping the max-
imum and intermediate principal strain axes. Instead, linea-
tions change orientations by progressive rotation of the
maximum principal strain axes.

The present model can predict great geological complexity
by varying the model variables. A crustal scale transpressional
high-strain zone may result from coalescence of many initially
separate strain concentration zones; strain recorded in rocks is
generally diachronic; continual tectonic transposition and
strain localization take place during transpression. All this
adds to the complexity of the strain geometry in a crustal scale
transpressional high-strain zone.

For a shear zone with migrating boundaries, the thickness of
its actively deforming part may not have fluctuated significantly
in its history, although rocks now at the margins of the zone
were initially farther away from the center of the shear zone.
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Appendix A. Pure shear strain rate and boundary-normal
velocity as functions of time in boundary-fixed zones

When the zone boundaries are fixed to material particles,
the half thickness of the zone, D, decreases with time, and if
the boundary-normal component of velocity relative to the
center of the zone, V,, is constant then:

D(t)=Dy—V,t (A1)
where Dy is the zone half thickness at = 0.
The instantaneous pure shear strain rate, £(¢), is then:
Vi Vi Va/D é
£(1) = Do __ & (A2)

D(I)ZDO_Vnt: 1 _(Vn/Do)f_ 1 —é‘of

where & = V, /Dy is the pure shear strain rate at = 0.
On the other hand, if the pure shear strain rate is constant
(i.e., £=¢&p), then:

dD
V,(t) = ——=4¢&D

dr (A3)

Solving (A3), we obtain the relationship presented in the
paper.

Appendix B. The relationships between strain rates and
boundary velocity where the latter is not horizontal

Let us set up a coordinate system x'y'z’ (Fig. Al) where
x'-axis is perpendicular to the strike of the zone, y'-axis par-
allel to the strike, and Z-axis is vertical and pointing
upward. The total convergence velocity vector v (Fig. Al)
expressed in this coordinate system has the following
components:

Vi = —v cosé sina
Vi, = v cosd cosa (A4)
V. =vsind

The base unit vectors (i, j, k) of the coordinate system x'y'z’
and the base unit vectors (eq, e,, e3) of the high-strain zone
coordinate system xyz (Fig. 3b and Fig. Al) are related by:

i = sinfe; + cosfe;
i=e
k = —cosfe; + sinfe;

(AS)

Using (AS) and performing a vector transformation to
express v in the high-strain zone coordinate system xyz,
we have:

YAy
D G
.
C B
, vy a0
X
E /4
v’ F
A
& ¥
/2B X' &
(6] S
B A 3
&

Fig. Al. Coordinate systems and zone orientation for deriving Eqgs. (A7). The
coordinate system xyz is the one used in the text (Fig. 3) where x-axis is perpen-
dicular to the zone boundary, y-axis parallel to the zone strike, and the z-axis par-
allel to the dip line of the zone and pointing up. The coordinate system x'y'Z’ is set
up so that the X'y’ plane is horizontal, y'-axis is parallel to the y-axis, and the z’-
axis is vertical and pointing up. Thus, OABC and DEFG are horizontal
planes. The relative velocity V (AD) has a plunge angle 6 (£ FDA). The an-
gle of convergence, o (£ EDF), is the angle between the plunge direction of
V and the strike of the zone. The velocity V can be easily expressed in x'y'z/
and then converted to corresponding expression in xyz.

v, = —v(cosd sina sinf + sind cosf)
Vy =V COSd cosa (A6)
v, = v(cosd sina cosf + sind sing)

Normalizing Eqs. (A6) by D, we have:

<

=1

& = ¢&,(cosd sina sinf — sind cosf)
Yes = €,C080 COSQX

Yas = &,(cosd sina cosB + sind sing)

Appendix C. Derivation of equations for the homogeneous
flow case

All expressions below are for normalized coordinates.

To obtain Eq. (4), one must solve the system of differential
equations (Eq. (3)). It is sufficient to consider the situation of
x >0, for the situation of x <0 can then be obtained by the
symmetrical property of the solutions. Rewriting Eq. (3) for
x > 0 only, we have:

dx_ —&x, 0<x<1 (a)

d | -¢ x>1 ‘

dy Yk, 0<x<1

R ()  (A3)
dz  [vex+éz, 0<x<l1 ©

dt | vas, x> 1 ¢

In solving Eqs. (A8), there are three different cases to
consider. The first is for material particles that were inside
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the zone throughout deformation (i.e., 0 <x <1, note the
distinction between Eulerian and Lagrangian coordinates).
For this case the solution is given in Lin et al. (1998),
and Jiang and Williams (1998). Written in the coordinate
system used in this paper and generalized to include the
other side of the zone, the solution is a set of three equa-
tions (Egs. (6a-i), (6b-i), and (6¢-1)) in the text (Eq. (1) is
used to express the shear strain rates in terms of «, f,
and ¢).

The second case is for material particles that were initially
outside of the zone (X > 1) but were inside the zone eventu-
ally. This means that sufficient time since the onset of defor-
mation has passed for the material particles to be transported
into the deforming zone. The time, &, it takes for a particle
at X > 1 to reach the zone boundary is:

X-1
E== (A9)

because the boundary-normal velocity is & (remember that nor-
malized velocity is used) and the distance between the initial
position of the particle and the zone boundary is X — 1. For
a particle initially outside of the zone, if t > &, it will end up
inside the zone. Once passing the zone boundary, the subse-
quent motion of the particle is identical to the particle that
was at the zone boundary initially because the flow in the
zone is steady. This means that to describe the motion of par-
ticles initially outside but finally inside the zone, we only need
to replace the time term in Egs. (6a-i), (6b-i), and (6¢-i) with
t — &, which represents the amount of time since the particle
passed the zone boundary. This, after some algebraic manipu-
lation and generalization to include the other half of the zone,
leads to Egs. (6a-ii), (6b-ii), and (6¢-ii) in the text.

The third case is for material particles that were outside ini-
tially and remain outside of the zone throughout deformation.
That is: [X| > 1 and 7 < &. The motion of these particles is rigid
translation described by Egs. (6a-iii), (6b-iii), and (6c¢-iii) in
the text.

Appendix D. Derivation of equations for the simple shear
concentration case

In the event where there is localization of the simple shear
component within the zone, both the strike-slip and dip-slip
components of the simple shear are function of x and the ve-
locity gradient tensor is:

—-& 00
Yss(x) 0 0],
Yas(x) 0 ¢

000
000/, |k>1
000

Rewriting this equation in a set of differential equations
(for x > 0), we have:

<

(A10)

dx —é&x, 0<x<1
dr_ [~ (@
dr —& x>1
d Yss(X)dx, 0<x<1 d .
dy _ [l * with | = écotacsef  (b)
dt 0, x>1 drf,,
d Yas(x)dx+édz, 0<x<1 d
. {,Yd () e * with 2| = écotf (c)
dr 0, x>1 drl
(Al1)

The solutions to Egs. (Al1) are, after being generalized to
include x < 0, Eq. (6) in the text.
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